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ABSTRACT 

It is known (G. Choquet, G. Mokobodzki) that a Baire-one afiCine function 

on a compact convex set satisfies the barycentric formula and can be 

expressed as a pointwise limit of a sequence of continuous af[ine functions. 

Moreover, the space of Baire-one affine functions is uniformly closed. The 

aim of this paper is to discuss to what extent analogous properties are 

true in the context of general function spaces. 

In particular, we investigate the function space H(U), consisting of the 

functions continuous on the closure of a bounded open set U C R m and 

harmonic on U, which has been extensively studied in potential theory. 

We demonstrate that the barycentric formula does not hold for the space 

13bI(H(U)) of bounded functions which are pointwise limits of functions 

from the space H(U) and that 13b(H(U)) is not uniformly closed. On the 

other hand, every Baire-one H(U)-a~ne function (in particular a solution 

of the generalized Diriehlet problem for continuous boundary data) is a 

pointwise limit of a bounded sequence of functions belonging to H(U). 

It turns out that such a situation always occurs for simplieial spaces 

whereas it is not the case for general function spaces. The paper pro- 

vides several characterizations of those Baire-one functions which can 

be approximated pointwise by bounded sequences of elements of a given 

function space. 
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1. I n t r o d u c t i o n  

Our contribution follows a longstanding and fruitful symbiosis of abstract  con- 

vex analysis and potential theory. A reader can consult the books H. Bauer [7], 

J. Bliedtner and W. Hansen [11], M. Brelot [13], G. Choquet [15], C. Constanti- 

nescu and A. Cornea [16], C. Dellacherie and P. A. Meyer [17] for introduction 

to the subject and further references. 

Let U be a bounded open subset of the Euclidean space R TM and H(U) be the 

vector space of all continuous functions on the closure U of U which are harmonic 

on U. Given a continuous function f on the boundary OU of U, define 

(1) fev : x ~-~ f f ds Sz v for each x • U. 
Jo u 

Here s~ v denotes the balayage of the Dirac measure sx on the complement CU of 

U, so that  sCu is the harmonic measure at x for every x • U. The restriction of 

fCu to U is a harmonic function and it yields the solution H f of the generalized 

Dirichlet problem for the boundary condition f .  I t  is known that,  in the case of a 

non-regular set U, the function fCv need not be continuous on U. However, fCv 
is a Baire-one function. Indeed, extending f to the whole space as a continuous 

function with compact support,  we can use the expression (1) to define fCv on 

R m. Then fCv is a finely continuous function by [16], Proposition 7.1.4, therefore 

a Baire-one function by [20]. (Recall that  a real-valued function on a topological 

space T is said to be a Baire-one function if it is a pointwise limit of a sequence 

of continuous functions on T. The set of all Baire-one functions on T will be 

denoted by 131(T).) Therefore, for every continuous function f on OU, fr.v is a 

pointwise limit of a sequence of functions continuous on U. A natural  question 

arises: 

Is it always possible to express f~v as a pointwise limit of a sequence of func- 
tions belonging to the function space H(U) 7 

Consider now a more abstract  framework of function spaces. A general back- 

ground can be found, e.g., in E. M. Alfsen [1], L. Asimow and A. J. Ellis [4], 

R. R. Phelps [27]. 

Let 7 / b e  a function space on a compact Hausdorff space K.  By this we mean 

a (not necessarily closed) linear subspace of C(K) (the space of all real-valued 

continuous functions on K equipped with the sup-norm) containing the constant 

functions and separating the points of K .  We will identify the dual of C(K) with 

the space AA(K) of all Radon measures on K.  Let MI(K) denote the set of all 

probability Radon measures on/x ' .  Then AAI(K) is a convex and w*-compact 

subset of AA(K). We denote by sx the Dirac measure at x • K.  
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Let ~4x(~/) be the set of all 7-l-representing measures for x • K ,  i.e., 

~ ( n )  := {~ • M ' ( A ' ) :  I(x) = f f @  for any f c 7-/}. 
JK 

The set 

C h n ( K )  := {x • K:  M x ( n )  = {cx}} 

is called the Choquet boundary of 7-/. A point x • X is said to be an exposed 
point for 7-/if there exists a function f • 7-/which attains a strict minimum (or 

a strict maximum) at x. It is easy to see that each exposed point belongs to the 

Choquet boundary. 

We define the space ,4(~) of all 7-l-aJ~fine functions as the family of all bounded 

Borel functions on K satisfying the following baryeentrie formula: 

f(x) --- /K fdp for each x • K and tt • A~x(~).  

Further, let At(?-/) be the family of all continuous ?-/-affine functions on K and 

BI(~/) := {f: there is a sequence {fn} in 7-/such that  fn -+ f on Ix'}. 

Of course, fn --+ f on K means the pointwise convergence, i.e., f,~(x) -+ f(x) 
whenever x E K.  Note that  we have already introduced the no ta t ion /~I (K)  for 

the family of all Baire-one functions on K.  We see that  B1 (K) is nothing else 

than 13~(C(K)). We shall denote by B~b(~//) the family of all bounded elements of 

BI(H) and by BDb(H) the set of all functions on K which are pointwise limits on 

K of bounded sequences of functions from "/-/. As an immediate consequence of 

the Lebesgue dominated convergence theorem we obtain that  

(2) c A(n). 

In convex analysis, the role of pointwise convergence in connection with affinity 

is well understood. G. Choquet [14] proved that  any Baire-one affine function 

on a compact convex set X satisfies the barycentric formula. A theorem by 

G. Mokobodzki (see [29]) says that  each Baire-one affine function on a compact 

convex set X is a pointwise limit of continuous affine functions. See Section 4 for 

more information. We consider the situation in the framework of function spaces 

and particularly in the case of harmonic functions. Under some circumstances 

it is true that  all bounded Baire-one functions from A(N) can be represented 

as pointwise limits of bounded sequences of functions from 7-/ or At(?-/). On 

the other hand, there are examples of limits of (now unbounded) sequences of 
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functions from Ae(7/) which are not 7/-affine. All these phenomena are in the 

focus of our interest. 

The plan of our paper is the following. Section 2 brings auxiliary results related 

to the Choquet theory of function spaces. Section 3 is devoted to potential the- 

ory. Ancona's theorem and a version of Bliedtner-Hansen's "smearing lemma" 

are applied there to show that  fe.u • Bb(H(U)) whenever f • C(OU). Sev- 

eral examples presented reveal an essential difference between the function space 

H(U) and the space A(X) of continuous affine functions on a compact convex set 

X. Namely, the barycentric formula need not hold for functions from Bb(H(U)) 
and Bb(H(U)) is not uniformly closed. Affine functions on compact convex sets 

are studied in Section 4. A slightly simplified proof of the Choquet theorem on 

Baire-one afline functions is given and the result is shown to lead to a maximum 

principle for Baire-one aitine functions. Section 5 provides a characterization of 

those Baire-one functions which are pointwise limits of a bounded sequence of el- 

ements from a function space in question. An example shows that,  for a suitable 

function space 7/, Baire-one 7/-affine functions need not coincide with B1(7/). 

This cannot occur in simplicial spaces, as proved in the final Section 6. This 

offers still another proof of the fact that  fCv • Bb(H(U)) for every f • C(OU). 
For simplicial spaces, we also construct a sequence of positive linear operators 

producing, for each continuous function, an approximation of a solution to the 

abstract  Dirichlet problem by means of continuous 7/-ai=fine functions. 

Before proceeding, some notational conventions will be established. 

We use positive for >_ 0 and strictly positive for > 0. 

For a linear space C of bounded Borel functions on a compact space K ,  we will 

denote by ]1" II the sup-norm on E. The annihilator ~ ±  of a family ~- C C of 

bounded Borel functions on h" is defined by 

(3) ~ ±  := {# • A/I(h'): #(f) -- 0 for any f • 5r}. 

Note that  annihilators (3) are here always taken as subsets of spaces of Radon 

measures. This agrees with the general notion of an annihilator if we consider the 

duality between C and ~/I(K) rather than the duality between E and (C, I1" I])*. 

For # E A/I(K), s p t #  stands for its support. Given a #-integrable function ~, 

the Radon measure having the density ~ with respect to # is labelled as ~#. For 

integrable functions on K ,  we simply write #(f) instead of fK fd#. 
Let X be a compact convex subset of a real locally convex space. Recall 

that  a real function f (not necessarily continuous) is said to be a]Jine on X if 

f(Ax + (1 - )OY) = ~f(x) + (1 - ~)f(y) for each x, y e X and for each A • (0, 1). 
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Denote by 9.1(X) the set of all anne  functions on X. Let A ( X )  := 9.1(X) N C(X) 

be the set of all anne  continuous functions on X. 

We denote by B(x , r )  the open ball with center at x and radius r in the 

Euclidean space 1R m. 

All topological spaces will be considered as Hausdorff. 

2. F u n c t i o n  spaces  

In the sequel we consider the following main examples of function spaces. In the 

"convex case" the function space 7/ is the linear space A ( X )  of all continuous 

affine functions on a compact convex subset X of a locally convex space. In the 

"harmonic case" [r is a bounded open subset of the Euclidean space R ~ and 

the corresponding function space 7/ is H(U), i.e., the family of all continuous 

functions on U which are harmonic on [7. 

Before going further we present results needed in the next sections. First, we 

come to a simple but very important well-known folklore result which is useful for 

a general context of flmction spaces. So let 7 / b e  a function space on a compact 

space K and let f be an upper bounded function on K. For x E K put 

f*(x)  := inf{h(x): h E 7/,h > f on K}. 

Obviously, f* is an upper semicontinuous function on K. Similarly, for a lower 

bounded function f on If ,  we define f ,  so that f , ( x )  = - ( - f ) * ( x ) ,  x E If .  

For the case of continuous affine functions, the proof of the next lemma can be 

found in [1], Corollary 1.3.6 (cf. also Remark following this Corollary). We give 

a self-contained proof. 

LEMMA 2.1: Let 7/ be a function space on K,  f be an upper semicontinuous 

function on K and x E K.  Then there exists # E Adx(7/) such that f*(x)  = p( f ) .  

Proof: Fix an x in K and assume first that f E C(K). The mappingp: g ~ g*(x) 

is a sublinear functional on d(K).  The Hahn Banach theorem provides a linear 

functional #$ on d(K)  such that p$(f)  = f*(x)  and Pl(g) < g*(x) for any 

g E d ( K ) .  Sincep(g) <_ Owheneverg  E C ( K )  a n d g  < 0 ,  w e s e e t h a t  t t y i s a  

positive Radon measure on N. Let h C 7/. Then 

. : ( h )  p(h) = h*(x) = h ( , )  

and simultaneously 

= , i ( - h )  5 p ( - h ) = ( - h ) * ( x )  = - h , ( z )  = - h ( x ) .  
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We see that #f • 34x(7/). 

Let now f be an upper semicontinuous function on K.  Denote by ~ the 

lower directed set {g • C(K): g _> f on K}. For any g • 6 there is a measure 

#g • Mx(7/)  such that #9(g) = g*(x). Given p • ~, let 

Me = {~9:  g • G,g ___ :} .  

~w* 
By a compactness argument, there is # • NeeG e • A moment's reflection 

shows that p • Adx(7/). We observe that 

_ _ ~ / )  * 

inf{u(p): ~, • M~} = i n f { u ( p ) : ,  • M e } <_ #(p) 

for each p • ~. Hence 

f*(x)  < inf{g*(x): g • G} = inf{#9(g): g • G} 

< inf{inf{Pg(p): g • G,g _< p}: p • G} _< inf{p(p): p E G} 

= # ( f )  < inf{#(h): h > f ,  h • 7t} = inf{h(x): h >_ f ,  h • 7/} 

=f*(x), 

which are the inequalities needed to finish the proof. I 

LEMMA 2.2: Let f be a bounded function on K. Then 

f*(x)=inf{g(x):g•A~(7/) ,  g>_f onK},  x • K .  

Proof: Recall that 

f*(x):=inf{h(x):h•7/ ,  h > f o n K } ,  x • K .  

Given x G K and g ~ At(7/), g > f ,  by Lemma 2.1 there is a measure p E A4x (7/) 

such that g*(x) = #(g). Then 

g(x) =#(g) = g*(x) > f*(x) = inf{h(x): h e 7/, h > f}  

>_ inf{~0(x): ~ • At(7/), ~ _> f} .  

Taking the infimum over all g in A~(7/) finishes the reasoning. I 

A bounded Borel function f on K is called 7~-convex if f(x) _< it(f)  for any 

x • K and any # • Adx(7/). Let/C~(7/) be the family of all continuous 7/-convex 

functions on K.  This convex cone determines a partial ordering on the space of 

all positive Radon measures on K: # -< u i f p ( f )  _< u(f )  for each f • Kc(7/). One 

of the most important results of the Choquet theory says that for each x • K 
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there always exists a maximal measure in A4x(7/) (with respect to the ordering 
<). 

The following result due to G. Mokobodzki (ef. [1], Proposition 1.5.9) charac- 

terizes maximal measures: 

MOKOBODZKI'S MAXIMALITY TEST: A positive Radon measure # on K is 

maximal if  and only if  p(k) = #(k*) for any k E ICe(7~). 

Now, a function space 7/-/is called simplicial if for each x E K there is a unique 

maximal measure 5x E Adx(7/). In the convex case 7/ = A ( X )  we say simply 

that  X is a Choquet simplex. 

We state here a well known "in-between property" for simplicial spaces, which 

in fact characterizes simpliciality. 

EDWARDS SEPARATION THEOREM: Let a function space 7/ on K be simplicial. 

Let - f ,  g E IC~(7/), g <_ f .  Then there is h E .4¢(7/) with g <_ h <_ f on K.  

Proo£" See [18], Theorem 3, cf. also [12], Theorem 3.2. I 

In the following proofs we need a consequence of the Edwards separation 

theorem. 

LEMMA 2.3: Ira function space 7/ on K is simplicial and 5x is a unique maximal 

measure in Jt4x(7/), then 

= 5 x ( g * )  = g * ( x )  

for any g E ]Cc(7/). 

Proof Fix g E h:c(7/). The first equality follows from the above Mokobodzki 

test. Now, for each h E At(7/) we have 5x(h) = h(x) and, according to the 

Edwards separation theorem, the family {h E At(7/): h >_ g} is lower directed. 

Therefore, using Lemma 2.2 

g*(x) -- inf{h(x):  h E Ac(7/), h _> g} = inf{~x(h): h E Ac(7/) ,h > g} 

and we arrive at the second equality. I 

At the end of this section we shall recall the notion of the state space and 

summarize its basic properties. This notion represents a natural  and efficient 

link between function spaces and convex analysis. Let 7/-/be a function space on 

a compact space K and let S(7/) denote the state space of 7-/defined as 

S(7/) := {~ E 7/*: ~ >_ 0, ~(1) = 1}. 
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Clearly, S(7/) is a convex w*-compact subset of the dual space 7/*. 

It  is well known that  7/* can be identified with the quotient space 

w * ) / 7 / l  

equipped with the quotient (locally convex) topology. 

We denote by 7r the quotient mapping from AJ(K)  onto 7/*. 

consequence of the Hahn-Banach theorem we obtain 

As a simple 

(4) s ( n )  = 

Let ¢: I (  -+ S(7/) be the evaluation mapping defined as ¢(x) = sx, x E K 

where sx(h) = h(x) for h • 7/. Obviously ¢(x) = 7r(¢x). 

Let ~: 7/--+ A(S(7/)) be the mapping defined for h • 7 / b y  O(h)(s) := s(h), 
s C S(7/). It  is known (cf. [1], p. 80) that  (I) serves as an isometric isomorphism 

of 7 / in to  A(S(7/)), and (I) is onto if and only if the function space 7 / i s  uniformly 

closed in C(K). In this case the inverse mapping is realized by 

(5) (I)-I(F) = F o ¢, F C A(S(7/)). 

We call a bounded Borel function f on K completely 7/-aJfine if p(f) = 0 for 

each p E H I .  The set of all completely 7/-affine bounded Borel functions on K 

will be denoted by A(7/). (These functions are termed "fonctions qui vdrifient 
la ealeul barycentrique modulo 7/" by M. Rogalski in [29].) 

A continuous function h is completely 7/-affine if and only if h E 7/. This is 

an easy consequence of the Hahn-Banach theorem. 

3. O n  t h e  s p a c e  BD(H(U)) 

Throughout U is a bounded open subset of R m, m _> 2. We will give different 

arguments proving that  fCu E 13D(H(U)) whenever f C C(OU). We also exhibit 

several examples illustrating the character of functions belonging to Bb(H(U)) 
and showing a dramatic difference between the nature of functions from Bb(H (U)) 
and B~(A(X)). 

We will use the standard potential theoretic notation; cf. [3], [11]. Let ~ = ~'~,  

if m > 2, and let ~ be an open disc containing U, if m = 2. The term potential 
on f~ means a Newtonian potential, if m > 2, and a Green potential with respect 

to fl, if m = 2. The symbol cap stands for the corresponding capacity on ft. 

Let pc  be the family of all continuous potentials on fL Where no confusion can 

result, we will omit the notation for the restrictions p r OU or p F U. 
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For A C ~t, x E f~ and p E PC, denote by ~x cA the balayage of ~ on A, b(A) the 

base of A, i.e., the set of all points at which A is not thin, and /~A the balayage 
of p on A. So/~A (x) CA = ~ (p), whenever p E P~. 

Let us recall that, for any x E [7, the measure ~r.u belongs to Ad~(H(U)). This 

immediately follows, e.g., fl'om [11], Corollary VI.11.6. 

Next we introduce the concept of an H-sequence. A positive linear operator T 

from C(OU) into H(U) is said to be an H-operator on U if T1 _< 1. A sequence 

{Tn} of H-operators will be called an H-sequence on U if T~f  --+ fC~r pointwise 

on U whenever f E C(OU). With these preliminaries we may state the following 

result. 

PROPOSITION 3.1: Let {Tn} be a sequence of H-operators. IfTnp(X) --+ RCpU(x) 

for every p E P~ and every x E U, then {T~} is an H-sequence. 

Proof: For each x E U and each n, let r~ be a positive Radon measure on OU 

such that T,~f(x) = fou fdr~,  f E C(OU). To complete the proof we only have 

to show that T ~  ~cU --  x n % as n ~ oc for a n y x  E U. We have v n(p) = Trip(x)--+ 
~ U  (x ) = ,Ou (_., whenever E pc. ~x ~P) p Since the sequence {r~}n is bounded and 

( ~  - 7 9~) [ OU is dense in C(OU) by [16], Theorem 2.3.1, we conclude that 
Tx-~ ~OU I 

72 ~ X  " 

We give two proofs of the main result of this section, Theorem 3.2, making an 

essential use either of an important result of Ancona, or of a simplified version 

of the nice result of Bliedtner and Hansen on a "smearing of balayage". Still 

another proof of the result uses simpliciality of the function space H(U) and is 

presented below, Remark 6.5. 

ANCONA'S THEOREM: Every compact, nonpolar set K C R m contains a compact 

set K I ¢ ~) such that K ~ is not thin at any of its points. Moreover, for each e > O, 

K'  can be chosen in such a way that cap(K \ K ' )  < e. 

Proof See [2]. I 

BLIEDTNER HANSEN'S LEMMA: There exists a family {Kt}o<t<l o[ compact 

subsets of OU nb(CU) such that s < t ~ Ks C Kt, OU Nb(CU) = b(Uo<t< 1Kt) 

and Ks C b(Kt) f o r a 1 1 0 < s < t < 1 .  

Proof." See [11], Theorem VI.6.13. I 
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THEOREM 3.2: There exists an H-sequence {Tn} on U such that the inequality 
Tn(p) <_ p holds for each p E pc. Consequently, fCg E I3blb(H(V)) whenever 

f E C(OU). 

First proof: Ancona's theorem provides an increasing sequence {Kn} of com- 

pact subsets of OU such that each Kn is not thin at any of its points and 

cap(0U \ K~) < 1/n. Denote K := U~ Kn. Then cap(0g  " -K)  = 0 and for 

every p E pc  
AKn AK Oil U.  sup Rp = Rp 

Our aim is to show that ~ g  = /~pOV = ~pCV. But this follows from [16], Corollary 

6.2.1, since the set OU \ K is of capacity zero, and therefore polar. 

If f E C(0U), define Tnf  as Tnf(x) = c K~:~ x ~j:, x E U. Since the compact 

set Ks is not thin at any of its points and f E C(K), T~f E H(U) (cf. [16], 

Proposition 7.1.4 or [11], Proposition VI.2.10). We have Tnp <_ ~CpU <_ p for 

every p E pc. Since Tap(x) = /~pg~ (X) /~ /~V (X) for every p E pc  and x E U, 

in light of Proposition 3.1 we conclude that {T~} is an H-sequence on U, and 

therewith the theorem is established, l 

Second proof'. Let {Kt}o<t<l be as furnished by Bliedtner-Hansen's lemma. 

For x E U and n E N define the smearing of balayage 

1 _ 2  - n  

Tnf(X) := 2 n [ sK,(f)dt ,  f E C(OU). 
J 1 _ 2 - n + 1  

By [11], p. 314, p. 298, for every p E pc, the function Tap belongs to H(U) and 

Tap/  < p on U. 

In order to show that {T~} is an H-sequence on U, it remains to prove that 

Tnf  E H(U) whenever f E C(OU). It is sufficient to consider a positive f E 

C(OU). Letp0  E pC, p0 > 0 o n f ~ a n d s  > 0. There exis tp ,  q E ;pC such that 

If - (P - q)] -< sPo on OU (cf. [16], Theorem 2.3.1). This yields, for every n E N 

and x E U, [T~f(x) - (Tnp(x) -Tnq(X)) l <_ ¢suppo(U). Since the space H(U) is 

uniformly closed and Tnp, T~q E H(U),  it follows that Tnf  E H(U). I 

Remark 3.3: The second proof of Theorem 3.2 is applicable in a more general 

context such as that of a strong harmonic space where the essential base of CU 

(cf. [11]) coincides with b(CU). 

As a consequence of the previous theorem we get the following assertion con- 

cerning the simpliciality of the space H(U). Note that there are more elementary 
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proofs in the case of potential theory on ]R "~ ([19], Corollary 4.3 or [25]) and that  

there are more general and deeper results in abstract  potential theory (cf. [10], 

Corollary 3.8). 

PROPOSITION 3.4: The function space H(U) is simplicial. For any x • U the 

balayage s~ U is a unique maximal measure in M x ( H ( U ) ) .  

Proof" Let x • U and let ~x be a maximal measure in A~x(H(U)).  If w • 

ICC(H(U)), then, since Sy Cu is a representing measure for y for any y • if, w CU > 

w. Further, the function w CU is H(U)-affine by Theorem 3.2 and (2). Hence 

~cu(~) = ~cu(~) = ~ (~c~)  > ~x(w). 

It  follows that  ~Cu ~_ 5~. Since (~ is maximal, we conclude that  ~x = s~ U. i 

From Corollary 6.4 it will follow that  13Db(H(U)) = BD(u)NA(H(U)) .  However, 

Bb(H(U)) # 13Db(H(U)), as shown in the following examples. This means also 

that  the barycentric formula can fail for functions from Bb(H(U)).  We will 

also demonstrate that  the space I3b(H(U)) is not closed with respect to uniform 

convergence. Analogous features cannot occur in the function space A ( X )  of 

affine continuous functions on a compact convex set X because in this case, by 

the Mokobodzki approximation theorem (see Section 4), 13b(x) M A ( A ( X ) )  ---- 

BD(A(X)) = Bb~b(A(X)). 

LEMMA 3.5: Suppose that 0 < r < R. Let f be a Baire-one function on R m 

such that f is harmonic on {x • R m : Ixl ¢ {0, r, R}}. Then there is a sequence 

{ha} of harmonic functions on ]R m such that hn(x) --+ f ( x )  for each x • I~ m. 

Proo£" Let { f ,}  be a sequence of continuous functions on ]R m such that  fn -+ f .  
t ! For each n • N we choose numbers 5~, Pn, r~, rn, Rn,  R n and t~,, such that  

! ! 

0 < ~n < Pn < rn < r < r n < Rn < R < R n < I~n 

and 

~n, Pn "'~ O, rn /~ r, rtn ~'~ r, Rn /~ R, R~ "~ R, gn /~ Cx~. 

Set 

K 1 : {x  • Rm: Ixl • [pn, rn] U [r~n, Rn] U [RIn, ~n]}, 

K 2 = {x  • Rm: IxI • {0,r,  R}} ,  

Pn = {x = ( x l , . . . , x ~ )  • ~t~: 0 < Xl < ~n}, 

g n  = (Kn 1 U/~-2) \ Pn. 
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Let g~ be a function on Kn which is equal to f on K~ VI K ,  1 and to fn on 

Kn M K 2. Notice tha t  the set R m \ /~'n is connected, the function gn is con- 

tinuous on the compact  set I(~ and harmonic on its interior K °, and that  

b(R "~ \ Ix'n) = b ( ~  \ Kn). By Mergelyan's  type theorem [21], Theorem 1.15, 

there is a harmonic function hn on ]R m such tha t  Ihn - gnl < 1/n on Kn. Since 

Un K n  = ~m,  it follows tha t  h~ -+ f as n --+ oo. I 

LEMMA 3.6: Let B = B(0, 1) be the open unit ball in [{m and let {Bj} be a 

sequence of pairwise disjoint balls in B, By = B(x j ,  rj), such that the union 

V of all balls Bj is dense in B. Let U C B be an open set containing V and 

] C BI (H(U) ) .  I f f  = 0 on U \ V, then there is k E N such that f(xk) = O. 

Prooi~ Let us assume tha t  f (x j )  ~ 0 for each j C N. Let hn be a sequence of 

functions from H(U) such tha t  h,~ --+ f .  Let x E K :=  U "- V and G be an open 

set containing x. Then  there is k C N such tha t  Bk C G. Let ak be the surface 

measure on OBk normalized by ak(OBk) = 1. Then, by the mean value proper ty  

of harmonic functions, ak(hn) --+ f(xk) ~ O. If  we take into account tha t  h~ --+ 0 

on OBk, by the Lebesgue domina ted  convergence theorem the sequence {ha} 

cannot  be bounded on OBk. In part icular  it follows tha t  

KnGnU{Ih~l> l} DaBknU{Ih~l> l}:/:¢, heN. 
i>n i>_n 

Appealing to the Baire category theorem we deduce tha t  

["'l U (Kn{Ih~t > 1})¢-0, 
nEl~li>_n 

which is a contradiction, because hn --+ 0 on K.  I 

Example 3. 7: Let U C ]l m be a bounded open set. Then  X{0}, the characteristic 

function of {0}, belongs to 13b(H(U)). 

Proo~ This is an immediate  consequence of Lemma 3.5. I 

Example 3.8: Let U C R m be a bounded open set and B C U be an open ball. 

Then  there is a function h E C(ff) M B~(H(U)) such that  h = 0 on U \ B and 

h > 0 o n B .  

Proo[: Without  loss of generality we can assume tha t  B = B(0, R). Choose 

r C (0, R). Let h be a continuous function on R "~ which vanishes outside B(0, R), 
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equals 1 on B(0, r) and solves the Dirichlet problem on B(0, R) \ B(0, r) with 

boundary values I on OB(O, r) and 0 on OB(O, R). By Lemma 3.5, such a function 

h belongs to BI (H(U)) .  | 

Remark 3.9: Let U C N m be a bounded open set and B = B(0, R) C U. Let 

f = X{o}. By Example 3.7, f E BD(H(U)). Obviously f (0)  ¢ eg0u(f) = 0, 

so that  the "barycentric formula" fails. Also, for the function h from Example 

3.8 the "barycentric formula" fails for the same reason. We see that  a function 

from Bb(H(U)) need not be continuous in U, and even if it is contimlous, the 

harmonicity on U may be violated. 

Remark  3.10: One may ask how far a function from the class Bb(H(U)) may 

be from being harmonic. A harmonic version of a result of Osgood [26] says that  

each h E BI (H(U))  must be harmonic on a dense open subset of V. The proof 

of this is a quite standard application of the Baire category theorem and the fact 

that  a locally bounded sequence of harmonic functions on an open set converges 

locally uniformly provided it converges pointwise. 

Example 3.11: Suppose that  U is a bounded open subset of N m. Then there 

exists a function f from C(U) which is harmonic on a dense open subset of U but 

does not belong to BD(H(U)). 

Proof: We may suppose that  the unit ball B is contained in U. Let {Bj} be as 

in Lemma 3.6. For each k e N let fk be a function from C(U) C? Bb(H(U)) such 

that  0 < fk _< 1 on Bk and fk = 0 on U \ Bk. The existence of such a function 

follows from Example 3.8. By Lemma 3.6, the function 

o o  

f = ~ 2-kfk  
k = l  

does not belong to 13b(H(U)). We easily observe that  f is continuous on [7 and 

harmonic on a dense open subset of U. | 

Remark  3.12: Lemma 3.5 yields a complete description of the family of all func- 

tions from BD(H(U)) which are harmonic on U, if U is a ball. Namely, a bounded 

function on U which is harmonic on U belongs to Bb(H(U)) if and only if it be- 

longs to BD([-7). However, the structure of the family of those functions from 

B~(H(U)) which are not harmonic on U is much more complicated, as illustrated 

by Remark 3.10 and Example 3.11. Related questions for holomorphic functions 
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were studied by Hartogs and Rosenthal [22]; for a new treatment including the 

harmonic case we refer to St~pni~kov~ [31]. 

The family B1 (P) of all Baire-one functions on a metric space P is closed with 

respect to uniform convergence (cf. [24], Lemma 3.5). More generally, if • denotes 

a vector lattice of real functions on a set Y and • contains the constant functions, 

then the family /~1(0) is likewise closed under uniform convergence (ef. [24], 

3.G.2). Further, if X is a compact convex set, then BI(A(X)) = P2(X) N BI(X) 

by Mokobodzki's approximation theorem stated in Section 4. Therefore the space 

B1 (A(X)) is also closed under uniform convergence. 

Therefore a natural question arises: 

Is the space B~ ( H(U) ) uniformly closed? 
We are going to present examples giving a negative answer to this question. 

EXAMPLE 3.13: Suppose that U is a bounded open subset of •m. Then the 
space B~( H (U) ) is not uniformly closed. 

Proof: Let Z := {zj: j C N} be a countable dense subset of U. By Example 3.7, 

X{z~) • Bb(H(U)) . Set 

k 
h k = ~ 2-JX{zj} on  V.  

j--1 

Then hk • Bb(H(U)) and the function h := limk hk is a uniform limit of the 

functions hk on U. Clearly, h is strictly positive on U n Z and is equal to zero 

on U \ Z. In particular, h is harmonic on no nonempty subset of U. According 

to Remark 3.10, h • BI(H(U)). 
Another example, where even a continuous function with the described prop- 

erties is obtained, is the following: Let U and {fk} be as in Example 3.11. By 

Lemma 3.6, the function 

f = 2-kIk 
k----1 

does not belong to Bb(H(U)), although the partial sums do belong there and 

converge uniformly to f .  | 

Remark 3.14: We know from Remark 3.12 that,  if U is the unit ball, then each 

function f E B~(U) which is harmonic on U belongs to B~(H(U)). This property 

certainly holds for some more general domains, but not for all open sets. Let 

U be now the set V from Lemma 3.6. Then, by Lemma 3.6, the characteristic 
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function of V does not belong to BD(H(U)), although it is lower semicontinuous 

on U and harmonic on U. 

Now, we present two examples concerning BD(H(U) +) where H(U) + is the 

set of all positive functions in H(U). This convex cone differs very much from 

13D(H(U)). Using the Harnack inequality it is easily verified that each convergent 

sequence of positive harmonic functions on U with a finite limit converges locally 

uniformly and thus all functions from 13b(H(U) +) are harmonic in U. 

Despite this we observe again a pathological behavior of the class 13b(H(U)+). 
We will show that B~(H(U) +) is not contained in A(H(U)) and that/31b(H(U) +) 

is not closed with respect to uniform convergence. Note that Fatou's lemma 

implies that all functions from 13b(H(U) +) are H(U)-eonvex. 

LEMMA 3.15: Let K be a metrizable compact space, F a nonempty closed 
nowhere dense subset of K and ~ a positive Radon measure on K with spt v = K. 

Then there exists a sequence {fn} of positive continuous functions on K such 
W* 

that f ,  ~ 0 on K and f,~v--+~F~ as n -+ oo. 

Proof Let p be a metric compatible with the topology on K and g be the 

p-distance function from F. Fix a decreasing sequence {Gn } of open sets with 
oo r ~k(n) 

An=l G~ = F. For each n E N we consider a "partition of unity" to~,o,i=l 

such that each w,~,i is a positive continuous function on K, spt wn,i C G~, the 

p-diameter of spt O~n,i is less than 1/n and 

k(n) 

E ~dn, i ~ OIl  1 F. 
i = 1  

For each n E N and i E {1 . . . .  , k(n)} we find Oln, i ~_ 0 such that 

c~n,i /K gWn,idv -= /F wn,idp. 

(Here we have used the assumption that F is nowhere dense.) Set 

k(n) 

fn =- E O~n'ig~n'i" 
i = 1  

Given ~ E C(K) and e > 0, by uniform continuity of ~ we find no C N such that 

oSCspt~n,~ ~ < ~, n > n o ,  i ---- 1 . . . . .  k(n). 
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Then,  for n _> no, 

SKfn~Odli--iF~odw ~ k~l SK(~n,i~Ddn,i~odwiSFbdn,i~od~ 
k(n) I' 

<-- ~ E /_Wn'idP ~p(g).  

i=l 

W* 
Hence f~v-+XFV as n --~ oc. Obviously  f~(x) = 0 for every n • N and  every 

x • F .  I f x  • K \ F ,  there  exists  k • l~Isuch t h a t x  ¢ Gk. Then  fn(x) = 0 

whenever  n _> k. We conclude t h a t  f~ --~ 0 on K as n --+ oe. | 

PROPOSITION 3.16: Let U be the open unit ball in ~m and a be the normalized 

surface measure  on OU so that a(OU) = 1. Let F C OU be a closed nowhere 

dense set with a(F) > O. Then the function 

~cv(x~),  x • u,  
f ( x )  := [ O, x • OU, 

belongs to Bb(H(U)+). 

Proof." By L e m m a  3.15 there  exists  a sequence {fn} of posi t ive  cont inuous  
W* 

functions on OU such t ha t  fn  --~ 0 on OU and f,~a--~xFa as n --~ e<~. Recal l  tha t ,  

for x C U, the  measure  e0v is abso lu te ly  cont inuous wi th  respect  to a and  its 

dens i ty  is the  Poisson kernel  

da cU 1 - I x l  2 
(Y)- ~:7~' yeov 

The  funct ions hn := fCnU belong to H(U) +, hn = fn on OU, so t ha t  hu --~ 0 on 

OU. If  x C U, then  

hn(X) = ~ I~-- fn(Y)~(Y)  -~ ~, D-- ~1" ~F(y)d~(y) = ~x (~ ' )  

as n --+ oc. We see t ha t  f E BI(H(U)+). | 

R e m a r k  3.17: I t  m a y  be worthwhile  to  note  t ha t  aga in  we have cons t ruc ted  an 

example  of a function from 13b(H(U)) for which the "barycent r ic  formula" does 

not  hold.  Namely,  f e BD(H(U)) \ A(H(U)) .  
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Remark 3.18: If U is a bounded open subset of R "~ and 0 E U, then the function 

X{0} F U from Example 3.7 is not in BI(H(U)  +) because this would lead to a 

contradiction with the Harnack inequality for positive harmonic functions. 

PROPOSITION 3.19: Let U be the open unit ball in R "~ and ~ have the same 

meaning as in Proposition 3.16. Let {Fj} be a sequence of pairwise disjoint 

nowhere dense closed subsets of OU such that 

Let 

Then the function 

a O U \  = 0 .  
j = l  

e CU(" F ~ X \X j ) ,  X C U ,  
hj(x) = O, x C OU. 

oo 

h = ~ 2-Jhj 
j=l  

is a uniform limit of a sequence of functions from Bb(H(U) +) and 

h E Bb(H(U)) \ B b ( H ( U ) + ) .  Even more: h cannot be expressed as a point- 

wise limit of a lower bounded sequence of functions from H(U).  

Proo~ By Remark 3.12, h C B~(H(U)). Supposing that  {gk} is a lower bounded 

sequence of functions from H(U) such that  gk -+ h, we will deduce a contradic- 

tion. Then the sequence {gk(0)} is bounded and thus by the mean value property 

of harmonic functions 

supa(gk) < oo. 
kEN 

Taking into account that  {gk } is lower bounded, we obtain 

(6)  a : =  sup (Igkl) < oo.  
kEN 

Let G ¢ l~ be a relatively open subset of OU. Then we can find j E N and 

z E G A F j  such that  z is a point of density for Fj,  i.e., 

(7) lim a (B( z , r )  \ Fj) 
r-~O r m - 1  ---- O. 

We fix p E (0, 1) such that  OU N B(z,  p) C G. Let us suppose that  

(8) sup{Igk(x)I: x C OU MB(z ,p ) ,  k E N} < ec. 
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We shall show that this assumption leads to a contradiction. By the Lebesgue 

dominated convergence theorem, 

ck := ] ;  ,gk,da--~]; lim,gdda=O. 
UNB(z,p) UnB(z,p) k 

It follows from (7) that we can fix 5 C (0, p/2) such that 

(9) a2m+lp-m5 < 2-J-m61-m(r(B(z, 5) N Fj). 

Set x = (1 - 6)z. Then 1 - Ixl 2 <_ 25 and I x -  Yl -> 5 for all y C OU. Hence 

(10) fOVnB(~,p) ~ gk(y)da(y) ~ 25 
.~. 251-mCk" 

Fhrther, by (6) 

~ ~ '~mgk(y)da(y) ~_ 25 m 
~U'~ B(z,p) (p--B) ~OU \ B(z,p) 

2m+1(~ fO - -  ]gk(y)ldo(y) (11) -< pm v 

~_ a2m+lp-m~. 

By (10) and (11) we have 

Igk(y)lda(Y) 

f 1 - 1 x l  2 k" 'd¢" " 1 - 1 x l  2 a" "da" " gk(x) 
JognB(z,p) lY .. B(z,p) 

<_ 261-m¢ k + a2m+lp-mh. 

Letting k -+ cc we arrive at 

(12) h(x) _< .2m+lp-' 5. 

On the other hand, 

(13) h(x) > 2 -j /Fj 1 -- Ixl: da 6 
- 

>_ n Fj). 

The inequalities (12) and (13) are not consistent with (9), and this contradiction 

disproves (8). We proved that for any nonempty relatively open subset G of OU 
there is a sequence {Yk} in G such that limk Igk(Yk)l ---- ¢C. In particular, the set 

Gk = U (OUn {Ignl > 1}) 
n>k 
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is open and dense in OU. By the Baire category theorem we conclude that  it 

cannot be true that  {gk} converges to zero everywhere on OU. | 

4. Aff ine  f u n c t i o n s  on  c o m p a c t  c o n v e x  se t s  

Consider now a compact convex set X in a locally convex space. Recall that  

9.1(X) denotes the set of all affine functions on X and A(X)  := P.I(X) n C(X) is 

the set of all continuous affine functions on X. I t  is clear that  A(X)  is a function 

space. 

Given # E A J I ( x ) ,  there is a unique point x~ E X,  called the barycenter of #, 

such that  

f ( x , )  = # ( f )  for any f C A(X) .  

The next lemma characterizes affine continuous functions in the language of 

this approach. Its proof is straightforward and therefore we omit it. It  can also 

be viewed as a simple illustration of Bauer 's  theorem, cf. Remark 5.6. 

LEMMA 4.1: Let f be a continuous function on a compact convex set X. Then 

f is atone if and only i f f  is A(X)-afflne. Shortly, A(X)  -- AC(A(X)). 

The fact that  the barycentric formula characterizes affine continuous functions 

is just a special ease of the following more general result. G. Choquet proved in 

[14] that  the "barycentrie formula" still holds for Baire-one affine functions. 

Let X be a compact convex subset of a locally convex space and V C X.  For 

a real function f on X we denote 

oscv f = sup{If (x  ) -  f(y)[:  x,y  E V}, 

oscv f (x )  = inf{oscvmv f :  V is a neighborhood of x}, 

ose f (x )  --- oscx f (x) .  

By open we understand relatively open in X. 

CHOQUET'S BARYCENTRIC THEOREM: If f is a Baire-one affine function on a 

compact convex set X in a locally convex space, then f is bounded and 

f (x )  = f x  fd#  for every x • X and It e M~(A(X) ) .  

In other words, PA(X) n/31(X) C A(A(X)) .  

Proof: See [1], Theorem 1.2.6. We present here a slightly simplified proof. As 

f is a Baire-one function, it has a point of continuity in X.  Hence, f is bounded 
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on an open neighborhood of this point. Now, using compactness of X and the 

affinity of f we can simply check that f is bounded on X. 

Also, the proof of the barycentric formula follows the usual lines of Choquet's 

proof except for Lemma 4.2 below. Consider x C X, # E A~x(A(X)) and choose 

> 0. By Lemma 4.2 below, there is a sequence {K~} of closed convex subsets 

of X such that 

We find N E 1~1 such that  

(14) 

Denote 

OSCK, ~ f ( 5", n E N, 

( o )  It X" .  Kn = 0 .  
n = l  

# ( X \ ( K 1 U . . . U K N ) )  < C. 

E n = K n \ U K i ,  n = l , . . . , N ;  E o = X \  U K i ,  
i<n i<N 

An --=- #(En), n = 0  . . . . .  N 

and define probability Radon measures #~, n -- 0 , . . . ,  N, by 

Pn  = ~'-~n ~t [ En i f /~n  > 0, 
( ex if An = 0. 

Let x~ be the barycenter of #n, n = 0 , . . . ,  N. For n > 1 we have xn E ~-6En C 

Kn. Here K6E denotes the closed convex hull of the set E.  The oscillation 

properties of f give 

I#n(f)- f(xn)l < ~, n= l , . . . , g ,  

It, o f f )  - f(xo)l <_ 2llfl l .  
(15) 

Obviously 

N N N 

(16) E)~n----1, E~nXn----X, a n d  E ~ n l t n : ~ .  
n=0 n-----0 n=0 

Using the affinity of f ,  (14), (15) and (16) we have 

N N N 

N 

,~olf(xo) - / zo ( f ) l  + ~ ,Xnlf(Xn) -/Zn(f)l 

<_ ~(211Yll + 1). 
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Letting ~ --~ 0 we conclude the proof. I 

LEMMA 4.2: Let f be a Baire-one a/~ne function on X and e > 0. Let # be a 

probability Radon measure on X. Then there exists a countable collection { Kn} 

of dosed convex subsets of X such that 

o s c K n f < e ,  h E N ,  

n = l  

Proo~ Fix c > 0 and call (for the purpose of this proof) an open set U C X 

saturated if there is a countable collection {Kn} of closed convex subsets of X 

such that 

oscK. f < a ,  n E N ,  

n = l  

Clearly any countable union of saturated sets is saturated. But we prove more: 

(17) Any union of saturated sets is saturated. 

Indeed, if V is a union of a collection of saturated sets, then V is open and thus 

there is a sequence {gk} of compact sets such that p(Hk) f f  #(V) .  Due to 

compactness, we can cover each {Hk} by a finite family of saturated sets, and 

putting together all these families we obtain a countable family of saturated sets 

which covers p-almost all of V. It easily follows that V itself is saturated, which 

proves (17). 

Let ~ be the family of all closed convex subsets of X whose complement in X 

is saturated and Z be the intersection of ~. By (17), Z is the smallest element 

of K. Set 

Y = {~  ~ z :  oscz f(~) > d .  

Then Y is a closed convex subset o f Z .  I f x  C Z \ Y ,  then there is an open 

convex neighborhood U of x such that U C~ Y = 0 and osc_ f < ~. Since U \ Z 
U n Z  

is saturated and U N Z covers U Cl Z, we observe that U is saturated. Appealing 

to (17), it follows that Y is a closed convex subset of Z whose complement in X 

is saturated. By minimality of Z, we have Y = Z. There is no point of continuity 

of f F Z, and since f is Baire-one, it follows that Z = 0. Hence X is saturated, 

which concludes the proof. | 
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Remark  4.3: The Choquet barycentric theorem states that  

n B l ( x )  c .4(A(X)) n 

The converse inclusion is also true. Indeed, given x,y  • X and A • (0, 1), 

we have Asx + (1 - A)Sy • .h4(;~x+O_~,)y)(A(X)), and thus f(,~x + (1 - A)y) = 

Af(x) + (1 - )~)f(y) for any f • A(A(X)).  

It  seems to be interesting to state the following corollary to Choquet 's  barycen- 

tric theorem. As usual, ext X denotes the set of all extreme points of X. 

~I-MAXIMUM PRINCIPLE: Let f be a Baire-one attine function on a compact 
convex set X in a locally convex space. If  f < 0 on ext X,  then f <_ 0 on X.  

Moreover, 
sup{If(x)l:  x • X} = sup{If(x)l:  x • ext X}. 

Proof'. Fix an x • X and suppose that  f(x)  > 0. Since f is a Bake-one function 

on X,  the set G :-- {y • X: f(y) >>_ f (x )}  is a Baire G5-set (recall that  Baire sets 
are elements of the or-algebra generated by zero sets of continuous functions), 

and due to the assumption we have G O e x t X  = O. Let # • AAx(A(X)) be a 

maximal measure. According to the Bishop-de Leeuw theorem (see [9], cfl also 

[1], the remark subsequent to Corollary 1.4.12), it(G) = 0. Applying Choquet 's  

barycentric theorem we get 

f x  f dp  < f x  f ( x ) d p =  f(x),  f(x)  = #(f)  = \ G .. G 

which is a contradiction. The second assertion is then an immediate consequence. 
| 

Remark 4.4: There is a generalization of Choquet 's  barycentric theorem due to 

J. Saint Raymond [28]. He proved that  if X is a compact convex subset of a 
locally convex space and f is a Baire-one convex function on X ,  then 

f(x) <_ I x  fd#  for every x • X and # 6 2t4x(A(Z)). 

Therefore, the Bt -maximum principle can be strengthened and it continues to 

hold for the class of Baire-one convex functions. 

Remark 4.5: A related result is the Bauer minimum principle concerning lower 

semicontinuous concave functions on compact convex sets, see [5]. A short proof 

based on the Krein-Milman theorem can be found in [30]. 
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MOKOBODZKI'S APPROXIMATION THEOREM: Let  X be a compact  convex subset 

of a locally convex space and f a Baire-one anne  function on X. Then there exists 

a bounded sequence of continuous aff/ne functions on X pointwise converging to 

f o n X .  

Proof (Cf. Rogalski [29]): Let f C BI(X) M 92(X). According to Choquet's 

barycentric theorem, f is bounded. Since f is a Babe-one function, there is a 

bounded increasing sequence {fn} of upper semicontinuous functions such that 

fn Z f (see [24], 3.G.1). For any x E X and n E N, Lemma 2.1 guarantees the 

existence of a measure # E A4x(A(X)) such that  (f~)*(x) = #(f~) (recall that 

f* = inf{h: h C A(X), h >_ f}).  Hence, using Choquet's barycentric theorem, 

(fn)*(x) -- p(f~) < #(f)  = f(x) .  Now, by an analogous reasoning, we can find a 

bounded decreasing sequence {gn} of lower semicontinuous functions such that 

gn "~ f and (gn), > f .  Since ( f n ) * - l / n  < f < (gn) ,+l /n  for every n, an appeal 
to the Hahn Banach theorem (cf. [15], Theorem 20.20) yields the existence of a 

function h,~ E A(X) such that 

fn  -- 1 /n  < (fn)* -- 1/Tt < h n < (gn)* "~- 1 /n  < gn J- 1/n.  

Then {hn} is a bounded sequence of continuous affine functions, h~ --+ f on X. 

I 

Remark 4.6: We obtain the following chain of equalities: 

A(A(X)) N BI(X) : 92(X) N BI(X) = B~b(A(X)) = B~(A(X)) : B,(A(X)). 

Indeed, the first equality is just Remark 4.3. The inclusion P2(X) M B1 (X) C 
13blb(A(X)) is the Mokobodzki approximation theorem. Now, the remaining in- 

clusions BblD(A(X)) C/{b(A(X)) C BI(A(X)) C 92(X) N BI(X) are trivial. 

Remark 4.7: Taking Mokobodzki's theorem for granted, Choquet's barycentric 

theorem is its immediate consequence. 

5. A general criterion 

We are going to characterize those bounded Bake-one functions which can be 

approximated pointwise by bounded sequences of elements of 7{. 

THEOREM 5.1: Let 7{ be a function space on a compact space K and f be a 

bounded Baire-one function on K. Then the following assertions are equivalent: 
(i) f • Bbb(7{), 
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(ii) f is completely 7-/-affine, 

(iii) there exists F E Bb(s(7-/)) M 91(S(7-/)) such that # ( f )  -- F(Tr(#)) for each 
E MI(K), 

(iv) there exists F E B~(S(7-/)) N 9.1(S(7/)) such that f = F o ¢, 
(v) f E Bbb(~). 

Proof: The implication ( i ) ~ ( i i )  follows immediately from the Lebesgue domi- 

nated convergence theorem. 

To see that (ii)==>(iii), suppose s E S (~ )  is given. By (4) there is its E A41(K) 

such that  7r(#~) = s. Define F(s) := #s( f ) .  This definition does not depend on 

the choice of #~. Indeed, if ~r(#s) = 7r(A~), then #~ - As E 7t ±. Thanks to the 

assumption (ii), gs ( f )  = A~(f). Obviously F is an affine function on S(7/) and 

satisfies g ( f )  = F(~r(#)) for each g E AdI(K).  To show that F is a Baire-one 

function, it is enough to show that  F - I ( u )  is an Fa-set whenever U is an open 

subset of R (cf. [24], 3.A.1). So take an open set U C R. Then 

F - I ( u )  = {Tr(#): # E .A/II(/(), F(Tr(lt)) • U) 

= ~r({# E 2Ltl(K): g ( f )  E U}). 

In a moment we shall show that the function g: # ~-~ p( f )  is a Baire-one function 

on (A41 (K), w*). Granting this it will follow that g-1 (U) is an Fo-subset of the 

w*-compact set Adl(K) and since 1r is continuous, we get that  F- I ( U)  is an 

Fo-set as well. In order to prove that  g is a Baire-one function, suppose that 

{]n} is a bounded sequence in C(K), fn --+ f on K. The functions gn: # ~-~ P(fn) 
are continuous on (A41(K),w*), form a bounded sequence and g~ --+ g. 

For the proof that ( i i i ) ~ ( i v ) ,  let x E K and s~ = ¢(x) E S(?-/). Then 

s~ = 7r(e~) and thus F(s~) = ex( f )  = f (x ) .  
Suppose now that (iv) holds. An appeal to Mokobodzki's theorem yields the 

existence of a bounded sequence {Fn} of afbine continuous functions on S (~)  

such that  Fn --+ F on S(7-/). Let us define fn(X) = Fn(¢(x)). Then fn -+ f .  By 

(5), fn E 7-/. Therefore ( i v ) ~ ( v ) .  

It is easy to see that (v):=~(i), so the theorem is proved. I 

THEOREM 5.2: Let 7-l be a function space on a compact space K.  Then there is 

an isometric isomorphism r o fBbl (K)NA(n)  onto the space B~(S(7/))N~I(S(H)) 

such that Tf(zr(#)) = , ( f )  for any f E B~(K)MA(']-/) a n d .  E AJ ' (K) .  Further, 

T = O  on T-L 

Proof: By Theorem 5.1, (ii)==* (iii), for each f E BD(K)A A(7-/) there is 

T f  E BIb(S(7-/)) n 9g((S(H)) such that  Tf(zr(#)) = #( f )  for each # E A41(K). 
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If F E Bb(S(7/)) r] 92(S(7-/)), then for the function f = F o O we have T f  = F 

(see Theorem 5.1, the proof of ( i i i ) ~ ( i v ) ) .  On the other hand, each f such that  

T f  = F must be the function F o ¢ because 

f ( x )  = e x ( f )  = Tf(rC(ex)) = F(O(x)),  x E K. 

Hence T is a bijection. Since the inverse mapping F ~-~ F o ¢ is linear, T is linear 

as well. Given f E Bb(K)  N A(7/),  using (4) we obtain 

]lTf]l = sup I T f ( s ) l =  sup ITf(Tr(#))[ 
s6s(?-t) tt6341(K) 

= sup I,(f)I = sup I]'(x)I 
peA41(K) x 6 K  

--IISII, 

Choose now h E 7t and s E S(7/). Then there is p E .Adl(K) such that  s = 7r(#) 

and 

Th( s )  = Th(Tr(p)) = #(h)  = s(h) = ep(h)(s), 

so T = • on 7/. I 

LEMMA 5.3: Let  7/ be a function space on a compact  space K ,  Z := 

(Bb(/x ") M A(7/) )  ±. Then 
(.4c(7/)) ± = F ~'. 

Proof: Since Ac(7/) c Bbl (K)NA(7 / ) ,  we have Z C (,4c(7-/)) ±. This annihilator 

is w*-closed, so we get ~ *  C (At(7/)) ±. 

Let Y be the linear span of {Adx(7-/) - 2t4x(7/): x E K}.  Then obviously 

Y C Z. Hence 

(18) 

On the other hand, 

?~ c ~ c A~(7/)) ±. 

(x(7/))" c ?~*. 

Indeed, suppose # ¢ F ~'*. There is f E C(K)  such that  # ( f )  = 1 and A(f) = 0 

for a n y A  E Y e * .  I f x  E K and u E M x ( 7 / ) , t h e n u - e x  E Y and therefore 

~,(f) = f ( x ) .  We see that  f is an 7/-affine function and p ( f )  # 0. Hence 

¢ (x(7/)) ±. m 

Now, we are going to characterize those function spaces 7/-I for which bound- 

ed Baire-one 7/-affine functions can be pointwise approximated by bounded se- 

quences of 7/-affine continuous functions. 
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THEOREM 5.4: Let 7i be a function space on a compact space K.  The following 

conditions are equivalent: 

(i) for any function f E Bb(K)nA( /~ )  there exists a bounded sequence {hn) of  

7-/-aft/he continuous functions such that h,~ --+ f on K,  i.e., B~(K)NA(7-I) = 

(ii) = (13[(K) n ±, 

(iii) (Bb(K) n A(7-l) ) ± is a w*-closed subset of AA(K),  

(iv) B~(K) n A(7-/) = B~(K) n A(7-/), 

(v) there is an isometric isomorphism T of Bbl(K) n A ( ~ )  onto the space of 

all affine Baire-one functions on S(AC(7/)) such that T -- • on A~(7-I) and 

(T f )  o ¢ = f for any f C Bbl(K) n A(H) .  

Proo~ It follows easily from Lemma 5.3 tha t  (At(7-/)) ± = (B~(K) N .4(7-/)) ± if 

and only if the set (B~(K) n A(7-/)) ± is a w*-closed subset of A~(K).  Therefore,  

conditions (ii) and (iii) are equivalent. The  implication ( i ) ~ ( i i )  follows im- 

mediately from the Lebesgue dominated  convergence theorem (cf. Theorem 5.1, 

(i)==*(ii)). The  condition (iv) is just  (ii) rewri t ten using another  notat ion.  The  

implication (iv)==~(v) follows from Theorem 5.2 and (v)==~(i) is a consequence 

of Theorem 5.1, ( i v ) ~ ( i ) .  I 

EXAMPLE 5.5: There is a function space 7-I on a (metrizable) compact set K 

such that (B~(K) n A(7-l)) ".. gl(7-l) # @. 

Proof." Let rn, n E N be mutual ly  distinct points of (0, ½) converging to r0 :-- 0. 

Set 

Kn = {3rn, 1 + rn, 2 + r~, 4 - r~, 5 - rn}, n = 0, 1, 2 . . . .  , 

K =  ~J K~. 
n = 0  

Let 7 / b e  the space of all continuous functions f on K satisfying the following 

conditions: 

-- (1- rn)f(O) + ~(f(1 + r~) + f (5-  rn)) f (3 rn )  
I 

= (1 - rn)S(O) + 2 ( f ( 2  + rn) + f ( 4  - rn)). 

It  is easy to see tha t  7/ is a function space on K and tha t  At(7-/) = 7/. Since 

f ( x )  = x belongs to 7/, we observe tha t  7/ separates points of K .  Fix n e N. 



Vol. 134, 2003 ON APPROXIMATION OF AFFINE BAIRE-ONE FUNCTIONS 281 

Any z c h'~ n [1, 5] is exposed and thus belongs to the Choquet boundary: we 

check this using the functions 

1, x = l + r n ,  {1, x=2+rn,  
f (x )= -1, 5 :=5-rn ,  or f ( x )=  -1, x - = 4 - r n ,  

0 elsewhere, 0 elsewhere. 

Also the points 1, 2, 4, 5 are exposed: we check this using the functions 

{ x - 3 ,  x C [ 2 , 4 ] M K ,  { x - 3 ,  x E [ 1 , 5 ] N K ,  
f ( x ) =  0 elsewhere, or f ( x )=  0 elsewhere. 

The point 0 belongs also to the Choquet boundary as the function f(x) = x 
exposes it. Given n E N, the fimction 

f(x)__{O, x E K ~  
x elsewhere 

shows that each representing measure for 3r~ has its support in {0} U Kn. 

Now, we define a Baire-one function h on K by 

1, x = l ,  
h(x) = 0 elsewhere. 

Then h is 7/-affine. Indeed, from the above consideration, it is enough to verify 

h(z) = it(h) for each z = 3rn, n • N, and p • A/lz(7/). Since we have shown 

that #({1}) = 0, the affinity is verified. Next we show that h does not belong to 

B1(7/). We observe that any f • 7/satisfies 

f (1  + rn) q- f (5  -- rn) ---- f (2  + rn) q- f (4  -- rn). 

Passing to limit as n -+ oc we obtain also 

1(1) + f(5)  = f(2)  + f(4) .  

The last identity must be satisfied also by all functions from B1 (7/), but it is not 

satisfied by the function h. I 

Remark 5.6: Let 7 / b e  a function space on K.  It is of interest to know under 

what conditions the function spaces 7 / and  At(7/) coincide. Sometimes it is quite 

simple to decide. We already know that A(X) = AC(A(X)), cf. Lemma 4.1. Also, 

the equality H(U) = AC(H(U)) can be easily verified. On the other hand, the 

function space 7 /o f  all second degree polynomials on [-1,  1] serves as an example 

of a closed function space where A~(7/) # 7/, in fact At(7-/) = C( [ - t ,  1]). 

In general, the situation may be quite complicated. We recall the following 
result of H. Bauer from [6]: 
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BAUER'S THEOREM: Let 7/ be a function space on K.  Then 7 / =  Ac(7/) i f  and 

only if  there is a min-stable dosed set VP C C(K) such that 7 / =  142 M ( - W ) .  

6. Simplicial function spaces 

Consider again a function space 7i on a compact space K.  Let f be a bounded 

Borel measurable function on K.  Define 

Hf:  x ~ fK fdSx, x E K, 

where 5x denotes the (unique) maximal measure in 2t4~(7/). 

PROPOSITION 6.1: Let 7 /be  a simplicial function space on a metrizable compact 

space K and f E C(K). Then H f E phi(K) M A(A~(7/)). 

Proof: Choose g E Kc(7/). Then Hg(x) = 6x(g) = 9*(x) for any x E K by 

Lemma 2.3. We see that  Hg is an upper semicontinuous function on K.  Since K 

is supposed to be metrizable, H g is a Baire-one function on K.  Let # E (At(7/)) ± 

be given. L e t ,  = ,1 - ,2  where pl  and/12 are positive Radon measures on K.  

By hypothesis, #l(h)  = p2(h) for any h E ,A~(7/). It  is an easy consequence of 

the Edwards separation theorem that  the set {h E A~(7/): h > g} forms a lower 

directed family of functions whenever g E/~c(7/). Therefore 

. I ( H  9) -- .~(g*) = . l ( inf{h:  h E A~(H), h _> 9}) 

= inf{pl(h):  h E A~(7/),h >_ 9} 

= i n f { . 2 ( h ) :  h e h > 

= ,2(inf{h: h E Ac(7/), h > g}) = ,2(9*) = , 2 ( g g ) ,  

i.e., , ( g  g) = 0. Since the space BI (K)  and the set {~ E C(K): , ( g  ~) = 

0} are closed under the uniform convergence and the space /C¢(7/) - /C~(7/)  is 

uniformly dense in C(K) (this follows readily from the lattice version of the Stone-  

Weierstrass approximation theorem), we see that  H f is a completely Ac(7/)-affine 

Baire-one function for each f E C(K). I 

COROLLARY 6.2: Let 7/ be a simplicial function space on a metrizable compact 

space K and f be a bounded Borel function on K.  Then H f is a Borel function 

and belongs to A(Ac(7/)).  

Proof: Let ~- be the family of all bounded Borel functions on K such that  H f is 

a Borel function and belongs to A(,Ac(7/)). Then by Proposition 6.1, f f  contains 
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all continuous functions on K .  Obviously 5 c is closed with respect to limits of 

bounded sequences. We conclude that  ~" contains all bounded BoreI functions. 
| 

THEOREM 6.3: / f a  function space 7-/ on K is simplicial, then for any bounded 

Baire-one 7-/-aft/he function S on K there e.xists a bounded sequence {hn} of 

continuous ~t-afl]ne functions such that h~ -~ f on I(. 

Proof: According to Theorem 5.4, it is enough to show that  Bb(K)NA(~4c(H)) = 

BD(K) Cl A(A~(7-/)). If  f C BD(K) n A(A~(?-/)), then f = H I and, by Corollary 

6.2, f is completely A~(?-/)-affine. | 

COROLLARY 6.4: Let U be a bounded open subset o fR m. Any bounded Baire- 

one H(U)-aff/ne function on U is a pointwise limit of a bounded sequence of 
functions from H (U). 

Proof: According to Proposition 3.4, the function space H(U) is simplicial and, 

for any x E U, the balayage ~x~Cu is a (unique) maximal measure in AAx(H(U)). 

Now, it remains to use Theorem 6.3 since AC(H(U)) = H(U). | 

Remark 6.4: Let us now fix f E C(OU). Thanks to Proposition 6.1, we have 

sCu G 13b(ff) A A(H(U)) and Corollary 6.4 tells us that  fCv is on f f  a pointwise 

limit of a bounded sequence of functions from H(U). Hence, knowing that  the 

function space H(U) is simplicial, we get again that  given f E C(OU), there exists 

a bounded sequence {hn} in H(U) such that hn -+ fCu on U. In the terminology 

of [29], we have shown that  the operator f F-+ fCu is a strong Lion operator. 

Combining Theorem 3.2 with Proposition 3.4, we arrive in the "harmonic case" 

at the following proposition: There exists a sequence (Tn} of positive continuous 

linear operators from C(OU) into H(U) such that Tnf(x) -~ c~v (f) for any f E 

C(OU) and x E U. Observe that  eCu is the unique maximal measure representing 

a point x. Now we are ready to derive a more general result. 

The essential tool in the proof of Theorem 6.6 is Lazar 's  selection theorem (cE 

[23], Theorem 3.1). Let us recall a few definitions. Let X be a convex subset of 

a locally convex space and E be another locally convex space. Suppose that  F is 

a map from X into 2 E, the family of all subsets of E. We call the map F affine, 

if F(x) is a nonempty convex subset of E for every x E X and 

 r(x) + (1 - c r( x + (1 - 
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whenever 0 < A < 1 and x, y • X .  A map  F is said to be lower semicontinuous, 

if for any open set U C E the set 

F - I ( u )  :=  {x • X :  F(x) n U ¢ 0} 

is open in X. 

LAZAR'S SELECTION THEOREM: Let E be a Fr6chet space (completely metrizable 

locally convex space), X a Choquet simplex, and F: X --+ 2 E an atone lower 

semicontinuous map such that F(x) is closed for every x • X .  Then there exists 

an atone continuous function 7: X -+ E with ?(x)  • F(x) for each x • X .  

THEOREM 6.6: Let ~ be a simplicial function space on a metrizable compact 

space K .  Then there exists a sequence {Tn} of affine continuous mappings, 

~n: S(AC(~]~)) --)" j ~ l ( / ( ) ,  

such that rC(Tn(S))~-~s for every s • S(Ac(7-/)). 

Proo~ Let {hk} be a dense subset of Ac (~ ) .  For any n define a map  F n on 

S(A~(?-/)) whose values are subsets of M I ( K )  as 

n 

Fn(s) = A { i t  • M I ( K ) :  ]#(hk) - S(hk)l < 1/n},  s • S(Ac(N)) .  
k=l  

By (4), for each s • S ( A c ( ~ ) )  there exists # • A/II(K) such tha t  zr(it) = s, 

and then of course It • Fn (s). Hence all maps F~ have nonempty  values. It  is 

s traightforward to verify tha t  F~ are affine, and so also F~ are affine. Here Fn is 

the map  which assigns to each s • S(~4c('~/)) the closure of  Fn (s) in (~41(K) ,  w*). 

We show tha t  F~ and Fn are lower semicontinuous. To this end, let n • N and 

let V be an open subset of J~41(K). If  

s e r x l ( V )  = {s • S(Ac(U)): rn(s) n V # O}, 

then there exists a measure it E V such that  

I#(hk) - s(hk)I < 1/n 

for any k = 1 , . . . ,  n. There exists an open neighbourhood U of s such tha t  for 

any t E U and k = 1 . . . . .  n we have 

I g ( h k ) -  t(hk)I < 1/n. 
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Hence p • Fn(t) and we see that the set Fnl (V)  is open. Since 

{s • s (A~(u)) :  r~(~) n v ¢ O} = {~ • s (A~(u)) :  r~(~) n v ¢ 0}, 

the map F,z is also lower semicontinuous. By [8], S(.4c(?-/)) is a Choquet simplex. 

Notice also that  341 (K) admits an affine and homeomorphie embedding into the 

Pr4ehet space N N. According to Lazar's selection theorem, for any n there exists 

a continuous affine mapping %: S(Ac(?-/)) --+ 341(K) such that 7n(S) • F , ( s )  

for any s • S(A~(H)). If s • S(A~(H)), then obviously %(s)(hk) --+ s(hk) 

for each he. Since the set {hk} is dense in A¢(H), it immediately follows that 
W* 

7n(s)(h) --+ s(h) for any h • A~(?-/). This verifies that rr(Tn(S))-+s. I 

THEOREM 6.7: Let ~ be a simplicial function space on a metrizable compact 
space K. Then there exists a sequence of positive linear continuous operators 

Tn: C(K) -+ ~4c(~) such that Tn(f)(x)  -+ 6x(f) for any f • C(K) and any 

x • K .  

Proof: As in Section 2, let ¢ be the evaluation mapping from K into S(Ac(?-/)). 

We may apply Theorem 6.6 to obtain a sequence of continuous attine mappings 
W* 

7n: S(AC(7/)) --+ Adl(K) such that  7r(Tn(s))~s for each s C S(AC(7/)). If n C N 

and f E C(K), set 

Tn(f)(s) := 3'n(s)(f), S E S(AC(7-/)), 

Tnf(x)  := ~'~(f)(¢(x)), x e K. 

Obviously {Tn} is a sequence of positive linear continuous operators on C(K) 

with values in C(K). By (5), T~f E A~(?-l) for each f C C(h'). Fix x • Chn(K) .  

We claim that 

(19) w* ~,~(s~)~. 

W* 
Otherwise we would have %k(sx)--~p ¢ ~x for a subsequenee, in view of com- 

pactness of A41(K). Then we would obtain 

~(,) = lip~(~n~(8~)) = 8~. 

Since ~ is the only H-representing measure for x, it would follow that p = ~x. 

This contradiction proves (19). Given f • C(K), we see that  for any x • Ch~(K) ,  

Tnf(x)  = vn(f)(Sx) -- ~/n(Sx)(f) --+ ex(f)  --- f (x) .  
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Now, let x C K be arbi t rary.  Since in the metr izable  case max imal  measures  are 

carried by Ch~t(K)  (cf. [1], Corol lary 1.5.17), the Lebesgue domina ted  conver- 

gence theorem assures tha t  

- - / c  Tnf(y)dhx(y)--~ / c  f(y)dhx(y) = 5x(f)  T J ( x )  h~(K) hn(K) 

for any f E C(K) ,  which finishes the proof  of the theorem.  | 
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